评估成像中的乳腺癌风险仍然是一个主观过程,在该过程中,放射科医生采用计算机辅助检测(CAD)系统或定性视觉评估来估计乳房密度(PD)。更先进的机器学习(ML)模型已成为量化早期,准确和公平诊断的乳腺癌风险的最有希望的方法,但是医学研究中的这种模型通常仅限于小型单一机构数据。由于患者人口统计和成像特征可能在成像站点之间有很大差异,因此在单机构数据中训练的模型往往不会很好地概括。为了应对这个问题,提出了Mammodl,这是一种开源软件工具,利用UNET体系结构来准确估计乳腺PD和数字乳房X线摄影(DM)的复杂性。通过开放的联合学习(OpenFL)库,该解决方案可以在多个机构的数据集上进行安全培训。 Mammodl是一个比其前任更精简,更灵活的模型,由于对更大,更具代表性的数据集的支持培训,因此具有改进的概括。
translated by 谷歌翻译
机器学习传感器代表了嵌入式机器学习应用程序未来的范式转移。当前的嵌入式机器学习(ML)实例化遭受了复杂的整合,缺乏模块化以及数据流动的隐私和安全问题。本文提出了一个以数据为中心的范式,用于将传感器智能嵌入边缘设备上,以应对这些挑战。我们对“传感器2.0”的愿景需要将传感器输入数据和ML处理从硬件级别隔离到更广泛的系统,并提供一个薄的界面,以模拟传统传感器的功能。这种分离导致模块化且易于使用的ML传感器设备。我们讨论了将ML处理构建到嵌入式系统上控制微处理器的软件堆栈中的标准方法所带来的挑战,以及ML传感器的模块化如何减轻这些问题。 ML传感器提高了隐私和准确性,同时使系统构建者更容易将ML集成到其产品中,以简单的组件。我们提供了预期的ML传感器和说明性数据表的例子,以表现出来,并希望这将建立对话使我们朝着传感器2.0迈进。
translated by 谷歌翻译
自动车辆(AVS)必须与异构地理区域的多种人类驱动因素互动。理想情况下,AVS的车队应该共享轨迹数据,以持续地从使用基于云的分布式学习的集体经验来重新列车和改进轨迹预测模型。与此同时,这些机器人应该理想地避免上传原始驱动程序交互数据,以保护专有政策(在与其他公司共享时的见解)或保护驾驶员隐私。联合学习(FL)是一种流行的机制,用于在不泄露私人本地数据的情况下从不同的用户学习来自不同用户的云服务器模型。然而,FL通常不是强大的 - 当用户数据来自高度异构的分布时,它会学习次优模型,这是人机交互的关键标志。在本文中,我们提出了一种小型变种的个性化FL,专门从事强大的机器人学习模型到不同的用户分布。我们的算法在实际用户研究中优于2倍的标准FL基准,我们进行了我们进行的人力操作车辆必须优雅地合并标准Carla和Carlo AV模拟器中的模拟AVS。
translated by 谷歌翻译
受益于扩大云基础设施,今天深度神经网络(DNN)在云中培训时具有越来越高的性能。研究人员花了几个月的努力,竞争额外的模型精度百分比。但是,当这些模型实际上在实践中部署在边缘设备上时,通常情况可能会突然下降超过10%而无明显原因。关键挑战是,在边缘设备上对ML推理执行并不多的可见性,并且在边缘部署过程中对潜在问题的认识很少。我们呈现ml-exray,一个端到端的框架,它提供了ML执行的层级细节的可见性,并帮助开发人员分析和调试云到边缘部署问题。更常见的是,子最佳边缘性能的原因不仅可以在模型本身中介绍,而是在整个数据流和部署过程中的每一个操作。评估显示ML-EXRARE可以有效地捕获部署问题,例如使用ML-EXRARE的预处理错误,量化问题,次优内核等,用户需要写入不到15行代码以完全检查边缘部署管道。消除这些问题,ML-EXRARE可以通过最多30%的模型性能,Pinpoint忽略层,指导用户通过两个数量级来优化内核执行延迟。代码和API将被释放为开源多语言仪表库和Python部署验证库。
translated by 谷歌翻译